HOME PRESENCE DETECTION AND LOCALIZATION
USING WI-FI CSI amazon

Presence Detection
« Detect human presence in a home with >90 % True Positive rate with commodity WiFi
CSl device

* Apply a 3-level wavelet transform to CSI data to capture sharp transitions and intrinsic properties

« Utilize a Recurrent Neural Network (RNN) for home presence detection, configured with input
dimensions of 200 and a hidden layer of 64 units

« Optimize the RNN model for analyzing time-variant CSI signals in a sequential manner, enabling N

*  Wi-Fi sensing using Channel State Information (CSI) is an innovative approach
that leverages the characteristics of wireless signals to detect and analyze
environmental changes
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Highest and Average Test Accuracy Across Rooms

* Presence Localization: Localize human presence, determining whether a
person is near the access point (AP) or near the device
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Devices Setup Training set included samples from 9 rooms, while the test set focused on a single room

« 2 ESP32-S3 chips (Tx and Rx), Espressif ESP CSI toolkit

« Bandwidth: 802.11n, 20 MHz

* Subcarriers: 52 CSI Magnitude V. Subcarriers Plot for No CSI Magnitude V. Subcarriers Plot for Presence CSI Magnitude V. Subcarriers Plot for Presence

- Send Frequency: 100 packets/second Presence near AP nead device
Room Selection (25 rooms total)

« 10 rooms (near AP/near device)

« 10 rooms(Positional Point; 0-1m, 1-2m, 2-3m, 3-4m)

« 5 rooms (random configurations for human presence)
Environments

« Study rooms, lab rooms, living rooms

« Data Classification

« No one present/Someone near transmitter/Someone near receiver

. Expanding Data Collection: gather data from a [1]l Chen X. xyanchen/WiFiCSISensingBenchmark
wider range of environments to improve mode|  lIntermetl. 2022. Available from: = |

https://github.com/xyanchen/WiFiCSISensingBenchmark
robustness. 2tab=MITlovfile

« Enhanced Generalization: Explore the potential [2] zhan z. zhanchaocheng/ESPCSI [Internet]. 2023.
of transfer |earning to improve mode| Available from: https://github.com/espressif/espcsi

adaptability across different environments.




